

Why don't (some) gamblers learn the value of gambling games? And What Can We Do About It?

Robert D Rogers
School of Psychology
(with Matthew Lim, Gerard Jocham, Laurence Hunt \&
Tim E Behrens) University of Oxford

- 48% of the UK population have gambled in the last 4 weeks
- 0.5% of people aged $16+$ in England identify as problem gamblers (2012)
- 0.7% of people aged $16+$ in Scotland identify as problem gamblers (2015)
- 1.1% of people aged $16+$ in Wales identify as problem gamblers (2015)
- Opportunities to gamble are increasing \rightarrow numbers seeking help?
- Casino and online revenues will go from \$118billion in 2009 to \$182billion in 2015
- Risk factors-> youth, male, familial gambling, low income and/or low education
- Social factors/supply-side factors \leftrightarrow individual factors
- Regulatory issues-> vulnerable groups (e.g. young people), crime and fairness
- 'Problem gambling' can be defined as gambling to a degree that compromises, disrupts or damages family, personal or recreational pursuits \rightarrow harms
- Now included alongside the substance use/addictive disorders within DSM-V

Some gambling basics....

Total consumption theory: the prevalence of a condition, such as excessive alcohol use, depends upon the average level of behaviour in the population

Fig. 5 A simplified model of the links between availability and problems

Household gambling expenditure in Family Expenditure Survey data collected before and after the introduction of a national lottery in November 1994

Table 2. Relation of proportion of households gambling excessively to average gambling expenditure by region, 1993-94 and 1995-96

		Slope of regression coefficient(95\% CI)		
		Against mean gambling expenditure		Against median gambling expenditure
Percentage gambling $>£ 20 /$ week	1993-94	0.8 (0.5-1.0)		-
	1995-96	1.6 (1.1-2.1)		2.9 (0.5-5.3)
Percentage gambling $>10 \%$ of income	1993-94	0.5 (0.1-0.8)		-
	1995-96	1.2 (0.7-1.7)	*	1.8 (0.3-3.3)

Public health effects of gambling: other better models are possible (Shaffer et al, 2004)

Exposure

Saturation

Social
 Adaptation

Social adaptation model (see Shaffer et al, 2004)

Exposure \rightarrow environmental toxins (casinos) increase the likelihood of related disease (e.g., gambling-related disorders)

Adaptation \rightarrow new toxins initially increase adverse reactions but subsequent symptoms diminish through adaptation/resistance.

Figure 2. Missouri self-exclusion rates over time. (Adapted from "Missouri Casino Self-Excluders: Distributions Across Time and Space," by R. A. LaBrie et al., 2007, Joumal of Gambling Studies, 23, p. 236.

Figure 3. Gambling-related problems over time following a casino opening. (Adapted from "A Prospective Study of the Impact of Opening a Casino on Gambling Behaviours: 2- and 4-year follow-ups," by C. Jacques and R, Ladouceur, 2006, Canualian Journal of Psychiarry, 51, p. 770.

Figure 1 Public health perspective on gambling and gambling-related problems (87).

ADDICTION ${ }^{\text {BY DESIGN }}$

Machine Gambling in Las Vegas

WATASHA DOW SCHILL

Blasczczynski \& Nower (2002)

Risk factors
Mechanisms

Symptoms /Harms

Some risk factors for gambling problems are specific......

Fig. 4. Resulting model (including standardized regression pathways >0.0) depicting familial influence on offspring gamblingrelated cognitive errors and gambling behavior. This model best fitted the data.

- Gambling expectancies
- 'Gambling makes the future brighter'
- 'Having a gamble helps reduce tension and stress'
- Inability to stop
- 'I can't function without gambling'
- 'My desire to gamble is so overpowering'
- Illusions of control
- 'Specific numbers and colours can help increase my chances of winning'
- 'I have specific rituals and behaviours that increase my chances of winning'
- Interpretive bias
- 'Relating my losses to bad luck and bad circumstances makes me continue gambling'
- 'Remembering how much money I won last time makes me continue gambling'
- Predictive control
- 'Losses when gambling, are bound to be followed by a series of wins'
- 'If I keep changing my numbers, I have less chances of winning than if I keep the same numbers every time'
- 'A series of losses will provide me with a learning experience that will help me win later'
- 'There are times that I feel lucky and thus, gamble those times only'
- Gambling expectancies
- 'Gambling makes the future brighter'
- 'Having a gamble helps reduce tension and stress'
- Inability to stop
- 'I can't function without gambling'
- 'My desire to gamble is so overpowering'
- Illusions of control
- 'Specific numbers and colours can help increase my chances of winning'
- 'I have specific rituals and behaviours that increase my chances of winning'
- Interpretive bias
- 'Relating my losses to bad luck and bad circumstances makes me continue gambling'
- 'Remembering how much money I won last time makes me continue gambling'
- Predictive control
- 'Losses when gambling, are bound to be followed by a series of wins'
- 'If I keep changing my numbers, I have less chances of winning than if I keep the same numbers every time'
- 'A series of losses will provide me with a learning experience that will help me win later'
- 'There are times that I feel lucky and thus, gamble those times only'

23,000 slot-machines situated in the state of Ontario generated approximately $\$ 3,135,660,000$ during 2004, amounting to over $\$ 130,000$ per machine

Optimal valuation $=($ Probability estimate * Current reward $)$

Table Sl. Descriptive statistics of 104 gamblers

$N(\%)$, Mean (SD)			Mean (SD)
Male	89 (85.60)	Chasing questionnaire	
Age	31.39 (11.13)	Big wins	13.67 (6.48)
Years of education	14.63 (2.96)	Big losses	10.50 (5.73)
		Near-miss	4.45 (2.09)
Gambling problems		Total	28.63 (13.14)
Past year	0.87 (1.42)		
Lifetime	1.67 (2.35)	Gambling Cognition	
		Gambling expectancies	12.27 (5.27)
Gambling losses (past year)		Illusions of control	7.69 (4.91)
£0	14 (13.50)	Predictive control	16.32 (7.00)
< 1100	62 (59.60)	Perceived inability to stop	8.92 (5.45)
£100-£500	22 (21.20)	Interpretive controlbias	12.14 (5.61)
> $£ 500$	6 (5.80)	Total score	57.64 (22.43)
Gambling frequency (past year)		Impulsivity	
Once or less	19 (18.30)	attentional	12.69 (3.19)
Few times a year	18 (17.30)	Motor	23.19 (3.78)
1-3 times a month	11 (10.60)	Non-planning	23.69 (4.81)
1-3 times a week	45 (43.30)	Total score	59.87 (9.99)
Daily	11 (10.60)		
		Affect	
Mood questionnaire	5.04 (3.89)	State positive	33.13 (6.59)
		State negative	12.51 (4.21)

Note: Gambling problems - National Opinion Research Centre DSM IV Screen; Mood questionnaire - Mood Disorder Questionnaire (MDQ; 20); Chasing Questionnaire (CHQ; 22); Gambling cognitions - Gambling Related Cognitions Scale (GRCS; 11); Impulsivity - Barratt's Impulsivity Scale (BIS-11; 12); Affect - Positive and Negative Affective Scales (PANAS; 25).

Action selection:- (non-problematic) gamblers tend to use estimated probability and reward value to select optimal actions and to a lesser extent, other cues in the recent reinforcement history

Optimal valuation $=($ Probability estimate * Current reward $)$

Age and impulsivity in (non-problematic) gamblers, is associated with reduced use of reinforcement history to estimate probability when selecting actions

Predictive control, in non-problematic) gamblers, is associated with reduced use of reinforcement history (i.e. probability tracking when selecting actions
'A series of losses will provide me with a learning experience that will help me win later'
'There are times that I feel lucky and thus, gamble those times only'

Predictive control, in non-problematic) gamblers, is associated with reduced use of reinforcement history (i.e. probability tracking when section actions
'A series of losses will provide me with a learning experience that will help me win later'
'There are times that I feel lucky and thus, gamble those times only'

	B	SE B	β
Constant	9.905	3.229	
Education	.231	.127	$.174^{+}$
Age	-.102	.032	$-.287^{* *}$
Past year gambling losses	.274	.534	.051
Non-planned impulsivity/BIS-11	-.209	.078	$-.256^{* *}$
Predictive control/GRCS	-.106	.051	$-.188^{*}$

Note: $\mathrm{R}^{2}=.26(p<.001) ;{ }^{+} p<.10 ;{ }^{*} p<.05 ; * * p<.01$; BIS-11 - Barratt's Impulsivity Scale (12); GRCS -
Gambling-related cognitions scale (II).

- Generic and specific risk factors for gambling problems have significant impacts on optimal action selection and reinforcement learning in a simulated gambling game
- Impulsivity and gambling-related cognitive biases are associated with reduced use of tracked/estimated probability information and reward magnitude when selecting actions
- Impulsivity, but not cognitive biases, is associated with low learning rates and overweighting of low probabilities and underweighting of high probable outcomes
- Predictive control blocks the use of estimated probability

'They think they know better!'

Why can't (some) gamblers learn the real value of gambling games?

Mindfulness \rightarrow 'a moment-by-moment awareness of our thoughts, feelings, bodily sensations, and surrounding environment'

And what can we do about it?

Mindfulness and gambling

- Dispositional mindfulness is associated with less severe gambling problems (Lakey et al, 2007)
- Experiential avoidance mediates thought suppression \rightarrow gambling problems (Riley, 2014)
- 8-week mindfulness-based group treatment in 17 problem gamblers reported to improve sense of control, anxiety symptoms and ability to 'stay in the now' (Chen et al, 2014)

Fig. 1 Proposed model of relationships between mindfulness, mechanisms of action, and problem gambling behaviour

Experiential vs. Analytic Modes

Induction:the physical sensations in your body...... the way you feel inside.......the amount of certainty you feel...... how sad or happy you are feeling............how weak or strong your body feels right now..........

Analytic
 Vs.
 Experiential

Think about the causes, meanings and consequences of the items. Spend a few moments visualising and concentrating on each item, attempting to make sense of and understand the issues raised.

Focus your mind on each experience. Spend a few moments visualizing and concentrating on your experience, attempting to find a phrase, image or set of words that best describes the quality of what you sense.

Demographics: 40 (regular) gamblers

	Analytic $(n=20)$, Mean (SEM)	Experiential $(\mathrm{n}=20 \mathrm{)}$, Mean (SEM)	Total (n=40), Mean (SEM)	p-value
Age	$27.55(2.025)$	$24.75(1.395)$	$26.15(1.234)$	$p=.262$
Raven's	$9.85(.425)$	$10.55(.276)$	$10.20(.256)$	$p=.175$
BDI	$5.40(1.027)$	$4.10(.743)$	$4.75(.634)$	$p=.312$
State PANAS + $29.70(1.357)$	$26.65(1.580)$	$28.17(1.057)$	$p=.151$	
State PANAS -	$11.60(.554)$	$11.00(.377)$	$11.30(.334)$	$p=.376$

Gambling questionnaires/cognitive biases

	Analytic (n=20), Mean (SEM) Experiential $(n=20)$, Mean (SEM)	Total (n=40), Mean (SEM)	p-value	
Gambling Cognitions / GRCS	$60.30(4.042)$	$59.40(4.398)$	$59.85(2.949)$	$p=.881$
Predictive Control / GRCS	$3.15(.280)$	$2.775(.253)$	$2.963(.189)$	$p=.327$
Gambling Beliefs / GBQ	$72.05(3.943)$	$74.35(4.055)$	$73.20(2.797)$	$p=.687$
Chasing / CHQ	$29.85(3.119)$	$27.85(2.041)$	$28.85(1.847)$	$p=.595$
Gambling Frequency	$3.40(.134)$	$3.55(.114)$	$3.48(.088)$	$p=.399$
Past Year Problems / NODS	$1.20(.296)$	$.80(.213)$	$1.00(.183)$	$p=.279$

VAS 1

Induction

Action-selection/R-L task

Manipulation check

Action-selection model: (regular) gamblers

Game Features

Controls: Experiential vs analytic

- A brief self-focus intervention - only an "analog mindfulness' - can help read the reinforcement histories of gambling-like games in regular gamblers but not controls

'Mindfulness needs a cognitive substrate to work on'

And what can we do about it?

Gamblers vs. Controls

Some risk factors for gambling problems are generic......

Figure 1. Subjective values of $\$ 1,000$ rewards delayed in time from 6 hr to 25 years. The median indifferent points for each of the three participant groups are presented for control participants (open triangles), for non-substance-abusing pathological gamblers (open squares), and for substance-abusing pathological gamblers (open diamonds). The lines represent Equation 1 when fit to these group median indifference points.

Individuals who reinterpret their losses in a way that encourages further gambling (interpretive bias) show reduced neural activity in anterior and posterior ACC region when deciding to quit

'Relating my losses to bad luck and bad circumstances makes me continue gambling' 'Remembering how much money I won last time makes me continue gambling'

Pathological gamblers show increased BOLD signal within dorsomedial prefrontal cortex, and striatum when deciding to quit

ICA/full sample: Pathological gamblers $(\mathrm{n}=25)$ show increased BOLD signal within dorsomedial prefrontal and striatal network when processing losing outcomes (and deciding to quit) compared to HCs ($\mathrm{n}=27$) and cocaine-dependents ($\mathrm{n}=18$)

Worhunsky, Potenza \& Rogers, submitted

Action selection
Estimated probability (as if a Bayesian learner)
Reward value (magnitude)
Prior outcomes (previous winning outcome; previous winning value)

Reinforcement learning/simple delta rule
Learning rate
Probability distortion (Prospect Theory)
Underweighting of reward magnitude (Prospect Theory)
Randomness (inverse temperature in softmax function)
$\beta s \leftarrow$ Demographics, gambling, impulsivity, gambling cognitions

Action selection
Estimated probability (as if a Bayesian learner)
Reward value (magnitude)
Prior outcomes (previous winning outcome; previous winning value)

Reinforcement learning/simple delta rule
Learning rate
Probability distortion (Prospect Theory)
Underweighting of reward magnitude (Prospect Theory)
Randomness (inverse temperature in softmax function)
$\beta s \leftarrow$ Demographics, gambling, impulsivity, gambling cognitions

Reinforcement learning:- impulsivity in (non-problematic) gamblers linked to low learning rates and overweighting of low and underweighting of high probabilities

	B	SE B	β
Constant	-.754	.495	
Non-planned impulsivity/BIS-11	-.045	.020	$-.212^{*}$

Note: $\mathrm{R}^{2}=.05$ ($p<.05$); ${ }^{*} p<.05$; BIS-11 - Barratt's Impulsivity Scale (12).

	B	SE B	β
Constant	.556	.413	
Non-planned impulsivity/BIS-11	-.049	.017	$-.273^{* *}$

Note: $\mathrm{R}^{2}=.08$ ($\mathrm{p}<.01$); ** $p<.01$; BIS-11 - Barratt's Impulsivity Scale (12).

